

2D Barcode Fonts

QR Code Barcode

https://www.barcoderesource.com/qrcodebarcode.shtml

Copyright (c) 2009-2021, ConnectCode

All Rights Reserved.

ConnectCode accepts no responsibility for any adverse affect that may result from undertaking our
training.

Microsoft and Microsoft Excel are registered trademarks of Microsoft Corporation. All other product
names are trademarks, registered trademarks, or service marks of their respective owners

Pg 1-1

QR Code Barcode

Table of Contents

1. QR Code Barcode ... 1-2
1.1 QR Code Barcode .. 1-2
1.2 ConnectCode QR Code Barcode Font .. 1-2

1.2.1 Data Compaction .. 1-2
1.3 Parameters of the QR Code Barcode .. 1-3

1.3.1 Error Correction... 1-3
1.3.2 Mask .. 1-3

1.4 QR Code Barcode Fonts .. 1-3

2. Font Encoder ... 2-4

3. .NET SDK ... 3-5
3.1 .NET Framework 4.0 Notes ... 3-6

4. .NET Standard SDK ... 4-7

5. Windows UI (WinUI) .. 5-8

6. Blazor ... 6-14

7. JavaScript SDK ... 7-18
7.1 QR Code Barcode with JavaScript and Barcode Web Fonts 7-18

8. Component Object Model Library ... 8-19
8.1 Tutorial on creating QR Code using COM ... 8-20

9. PowerBuilder ... 9-24
9.1 Tutorial on creating a QR Code in PowerBuilder ... 9-24

10. Crystal Reports UFL ... 10-29
10.1 Tutorial on creating QR Code with Crystal Reports UFL 10-29

11. Microsoft Reporting Services .. 11-35
11.1 Configuring Visual Studio ... 11-35
11.2 Configuring Reporting Services ... 11-37
11.3 Create barcodes in a Microsoft Reporting Services (SSDT) 11-38

Pg 1-2

QR Code Barcode

1. QR Code Barcode

1.1 QR Code Barcode

The QR Code (Quick Response) barcode is a 2-dimensional barcode consisting of black square

patterns on a white background. The barcode is capable of storing more information than a
conventional barcode. It is developed by Denso-Wave in Japan and is one of the more popular 2-
dimensional barcodes. Another reason for this barcode popularity is because it is adopted by many
mobile or smartphone applications for linking physical world objects to a web URL (Uniform
Resource Locator).

1.2 ConnectCode QR Code Barcode Font

This is a professional True Type (TTF) barcode font that is used to create a QR Code barcode by
selecting a font in your favourite text editor. The package includes a standalone encoder, a .Net

Dynamic Link Library (DLL), true type font for creating a QR Code barcode that strictly adheres to

industry specifications.

1.2.1 Data Compaction

The QR Code is able to pack large amount of data using the various compaction methods. Each of
the compaction method is optimized for a specific type of data. For example, the Numeric method

is optimized for numbers. The ConnectCode encoder automatically scans through the data and
detects the most optimized compaction method. On top of that, it also switches among the
different compaction methods if one method is unable to fully encode the data.

• Numeric - Optimized for numbers.
• Alphanumeric - Optimized for numbers and alphabets. This compaction method is less

optimized than Numeric.
• Binary - Optimized for any 8-bit binary data.

• Kanji - Optimized for Kanji data.

Pg 1-3

QR Code Barcode

1.3 Parameters of the QR Code Barcode

The following sections detail the different configurable parameters of the QR Code barcode. If you
are new to this barcode, it is recommended that you use the default or automatic settings
mentioned below.

1.3.1 Error Correction

QR Code uses the Reed-Solomon error correction technique. This allows the barcode to be partially
damaged without causing any loss of data. There are four different levels of error correction that
can be chosen. The higher the level, the more resilient the barcode is to withstand damage.
However the drawback is that more data codewords in the barcode are needed to store the error

correction codewords instead of the actual data.

• Level L - 7% of codewords can be recovered
• Level M - 15% of codewords can be recovered

• Level Q - 25% of codewords can be recovered
• Level H - 30% of codewords can be recovered

1.3.2 Mask

QR Code's reliability can be improved by a method called masking. Masking regularizes the
distribution of the black square patterns. Different types of masking patterns according to the
specifications are supported by the ConnectCode QR Code. The default automatic masking option

is recommended if you do not want to delve into the technical implementation of the barcode.

• Mask 0 – Mask Pattern 0
• Mask 1 – Mask Pattern 1
• Mask 2 – Mask Pattern 2
• Mask 3 – Mask Pattern 3
• Mask 4 – Mask Pattern 4

• Mask 5 – Mask Pattern 5
• Mask 6 – Mask Pattern 6
• Mask 7 – Mask Pattern 7
• Auto – Automatic Masking

1.4 QR Code Barcode Fonts

The following is the description of the QR Code barcode font used by the encoder or .Net DLL.

Font Name Description Recommended Sizes

CCodeQR

(CCodeQR_Trial for the
Trial version)

Standard QR Code Barcode Font. Font Size 2..64

Note
1. You may see spaces between multiple Rows when you use the QR Code barcode fonts in

certain font sizes. The spaces can be easily removed by increasing or decreasing the font
size by 1 point.

Pg 2-4

QR Code Barcode

2. Font Encoder

The QR Code Barcode Font package in ConnectCode comes bundled with a Font Encoder that

allows you to encode the barcode quickly and easily. This is useful if you like to encode a single
barcode to be pasted into your brochure, on packaging or product items. The Encoder supports all
parameters as described in the sections above.

The Error Level and Mask are parameters that are supported (see previous section for detailed
description).

The Font Name and Font Size in the “Output” section can be changed after the QR Code barcode is
created. This allows the height and the size of the barcode to be changed after the barcode is
created.

The “Show As Text” option allows you to see the text output of the barcode in a normal text font.
The “Copy Barcode” button allows the barcode to be copied and pasted onto other applications

easily.

Pg 3-5

QR Code Barcode

3. .NET SDK

A .NET Barcode SDK is also bundled in the ConnectCode QR Code Barcode Font package. This SDK

can be bundled in your applications if you purchase the necessary distribution licenses.

Library Name

QRCode.dll

Namespace

ConnectCode.BarcodeFonts2D

Class Name

QRCode

Requirements

.NET 2.0 and onwards

Constructors and Functions

QR(String data, String errorcorrectionlevel, int mask);

This is the constructor for the QR barcode. It is used for initializing the QR barcode.

data : The data input string to be encoded as a barcode.

errorcorrectionlevel : The Error Correction Level “L”, “M”, “Q” or “H”.

mask : Mask Pattern. Any number from 0..7 or 8 for Auto.

String Encode();

This function encodes the barcode based on the parameters specified in the constructor. The result
will be returned as a string.

int LengthExceeded();

The Encode() function may return an empty output string either due to invalid inputs or the length
of the data exceeded the length specified by the QR Code specifications. A call to this function
after the Encode() function allows you to determine whether the data length has exceeded.

Pg 3-6

QR Code Barcode

Sample Usage (C#)

Using ConnectCode.BarcodeFonts2D;

.

.

.
QR barcode = new QR("12345678",”M”,0);
String result = barcode.Encode();
Font font = new Font("CCodeQR", 8);

richTextBox1.Text = outputstr; //private System.Windows.Forms.RichTextBox richTextBox1;
richTextBox1.SelectAll();
richTextBox1.SelectionFont = font;

Sample Visual Studio Project

• Name - ConnectCode Encoder

• Solution Name - ConnectCode.sln

• Language - C#

• Requirements - .NET 2.0 and onwards, Visual Studio 2008, 2010, 2012, 2013, 2017 and
onwards.

3.1 .NET Framework 4.0 Notes

.NET Framework 4.0 includes and uses CLR 4.0. It does not automatically use its version of the
common language runtime to run applications that are built with earlier versions of .NET
Framework. This is unlike .NET 2.0-3.5 where the framework uses CLR 2.0 to run applications.

Basically, there is no version 3 of the CLR.

Hence, ConnectCode 2D Barcode SDK provides two sets of .NET DLLs for different versions of the
.Net Framework as shown below:

For .NET 2.0 to 3.5 please use the DLLs and samples in

• /Resource subdirectory
• /.Net Samples subdirectory

For .NET 4.0 please use the DLLs and samples in

• /Net4 subdirectory
• /Net4/.Net Samples subdirectory

Pg 4-7

QR Code Barcode

4. .NET Standard SDK
.NET Framework is a software framework that is developed by Microsoft to run primarily on
Microsoft Windows. Over the years, the framework has been forked and enhanced to serve many

different purposes. For example, the Universal Windows Platform uses a specific set of APIs from
the .NET Framework to help programmers develop apps for the Windows Store. The .NET Core
Framework also uses a subset of APIs from the .NET Framework to support the development of
applications that can run on different operating systems such as Windows, Mac, and Linux.

.NET Standard is a specification of common APIs that are available on the different .NET

frameworks. By creating a class library (DLL) that targets the .NET Standard, a developer can be
assured that his library can be used or shared by projects developed on the various .NET
frameworks.

As of .NET Standard v2.0, the .Net Standard specification is implemented by the following

frameworks:

• .NET Core
• .NET Framework
• Mono
• Xamarin.iOS
• Xamarin.Android
• Universal Windows Platform

.NET Standard QR Code Library

• Resource/NETStandard/netstandard2.0/NETStandardQRCode.dll

The QR Code Barcode package includes a .NET Standard compliant QR Code class library (also
available as a nuget) that targets the .NET Standard 2.0 specification. This library can be used by

projects developed on different .NET frameworks and when used together with ConnectCode
Barcode Fonts, generates barcodes of the highest quality that is able to meet the strictest
requirements of the auto-id industry.

Sample ASP.NET Core Sample

• Resource/NETStandard/ASPNETCoreQRCodeSample

Pg 5-8

QR Code Barcode

5. Windows UI (WinUI)

In this tutorial, we are going to illustrate how to create a standards-compliant QR Code barcode in

a WinUI (Windows UI Library) Desktop project. WinUI is a user experience framework that unites
Win32 and UWP developers to a common API for developing apps with modern user interfaces in
Windows. The creation of a QR Code barcode involves the use of a .NET Standard 2.0 class library
for encoding input data and a Microsoft WinUI Canvas for displaying barcode. The class library
ensures the the QR Code compliance with the ISO/IEC 18004:2015 standards by validating input
data, generating Error Correction Codewords, and applying necessary QR Code mask patterns.

The class library returns a text string in the format of ones (1 - Black) and zeros (0 - White). This
string provides the flexibility of rendering QR Code in components such as a WinUI Canvas
(reference code in this tutorial), other .NET Canvas, or System.Drawings. The QR Code can also be
displayed by placing the text string into a WinUI TextBlock, TextBox, or RichTextBlock, and then

applying a QR Code font (part of ConnectCode QR Code package). Finally, many modern document
formats such as Microsoft Word and Adobe PDF support font embedding. This means a Line of

Business (LOB) app can generate a document that includes a high-quality QR Code barcode by just
using a text string and a QR Code font embedded into the document.

Prerequisite

• ConnectCode QR Code package is installed
• Visual Studio 2019 16.9 (or onwards)

• WinUI 3.0 (Project Reunion 0.5 or onwards)

1. Launch Visual Studio and create a new project. Select the "Blank App, Packaged (WinUI in
Desktop)" C# template and click on the Next button.

Pg 5-9

QR Code Barcode

2. In Configure your new project dialog, enter "WinUIQRCodeApp" as Project name, leave
everything else as default values, and click on the Create button. A Visual Studio solution
containing WinUIQRCodeApp and WinUIQRCodeApp (Package) is created.

3. Next, we add the QR Code class library available in nuget.org to the project. In the Solution

Explorer, right-click on WinUIQRCodeApp and select Manage Nuget Packages. In the Nuget
Package Manager shown below, click on Browse and search for "ConnectCode QR Code". Select
"NETStandardQRCode" and click on Install to add the class library.

Pg 5-10

QR Code Barcode

4. Add the QR Code font into the WinUIQRCodeApp Visual Studio project by right-clicking on
WinUIQRCodeApp project in Solution Explorer. Select Add -> New Folder and name the folder as
"Fonts". Next, right-click on "Fonts" folder, select Add -> Existing Item and navigate to the
following folder:

C:\Program Files (x86)\ConnectCodeQRCode

(or C:\Program Files (x86)\ConnectCodeQRCodeTrial if you are using the Trial version)

Select the QR Code font:

CCodeQR.ttf (or CCodeQR_Trial.ttf)

5. We have added a QR Code class library and a QR Code font to the project. As described in the
overview, we are going to generate a QR Code using the library and then display it on a WinUI

Canvas or with a barcode font. Click on MainPage.xaml in Solution Explorer and change the XAML
to the following:

<Window
 x:Class="WinUIQRCodeApp.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:WinUIQRCodeApp"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <StackPanel Orientation="Vertical" HorizontalAlignment="Center" VerticalAlignment="Center">
 <Button x:Name="myButton" Click="myButton_Click">Click Me
 <TextBlock x:Name="QRCodeBarcode"
 Margin="10">
 <Canvas x:Name="QRCodeCanvas" Margin="10">
 </StackPanel>

</Window>

The TextBlock is used to display the text string returned by the class library. We will apply the font
to this text string later in the tutorial.

Pg 5-11

QR Code Barcode

6. Next, we add the C# code to encode the input data. Click on MainWindow.xaml.cs and add the
following to the top of the file.

 using Net.ConnectCode.BarcodeFontsStandard2D;

Locate myButton_Click function and add the following to the function.

 myButton.Content = "Clicked";
 QR qr = new QR("12345678","L",8);

 //ECL L-7% M-15% Q-25% H-30%

 //Mask 0..7 or 8 for Auto
 //There are 8 masks patterns to apply to a QR Code

 //The purpose is to make the QR Code easier to read for the scanners.

 string qrCodeStr = qr.Encode();
 QRCodeBarcode.Text = qrCodeStr;

 int squareD = 10;
 double posX = 0;
 double posY = 0;

 foreach (char c in qrCodeStr)
 {

 var rect = new Microsoft.UI.Xaml.Shapes.Rectangle();
 rect.Width = squareD;
 rect.Height = squareD;
 Canvas.SetLeft(rect, posX);

 Canvas.SetTop(rect, posY);
 if (c=='1')
 {

 rect.Fill = new SolidColorBrush(Microsoft.UI.Colors.Black);
 posX = posX + squareD;
 }
 else if (c=='0')
 {
 rect.Fill = new SolidColorBrush(Microsoft.UI.Colors.White);
 posX = posX + squareD;

 }
 else if (c == '\n')
 {
 posX = 0;
 posY = posY + squareD;

 }

 QRCodeCanvas.Children.Add(rect);
 }

The code above uses the Net.ConnectCode.BarcodeFontsStandard2D.QR class to generate a QR
Code barcode text string using the input data "12345678", an ECL (Error Correction Level) of "L",

and auto QR Code masks. A higher ECL setting generates a QR Code that can be recovered even
when it is partially damaged. However, this means more redundancy is added to the QR Code,
resulting in a larger QR Code in size. If you are not sure of which ECL to use, we recommend
starting with "M" which provides a good balance between redundancy and size.

Pg 5-12

QR Code Barcode

7. Run the app in Visual Studio, click on "Click Me" button to see the generated QR Code.

The first part after the button shows the text string of the QR Code class library. The second part

shows the QR Code rendered on a WinUI Canvas.

Pg 5-13

QR Code Barcode

8. We can change the raw text string above into a QR Code by applying a QR Code font. Change
the code in MainWindow.xaml to the following:

<Window
 x:Class="WinUIQRCodeApp.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:WinUIQRCodeApp"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <StackPanel Orientation="Vertical" HorizontalAlignment="Center" VerticalAlignment="Center">
 <Button x:Name="myButton" Click="myButton_Click">Click Me
 <TextBlock x:Name="QRCodeBarcode"

 FontFamily="/Fonts/CCodeQR.ttf#CCodeQR"
 FontSize="10"
 Margin="10">
 <Canvas x:Name="QRCodeCanvas" Margin="10">
 </StackPanel>
</Window>

If you are testing with the Trial version of the QR Code font, use the following:

 FontFamily="/Fonts/CCodeQR_Trial.ttf#CCodeQR_Trial"

Run the application again and you should see the following:

Pg 6-14

QR Code Barcode

6. Blazor

In this tutorial, we illustrate how to create an ISO/IEC 18004:2015 compliant QR Code barcode in

a Blazor WebAssembly app. Blazor is a framework developed by Microsoft for building interactive
web apps using C#, .NET, and HTML. The framework supports apps hosted on ASP.NET Core
Server (Blazor Server), and Single-page apps (Blazor WebAssembly) that are downloaded onto
your web browser before running. Both scenarios are supported by the method for QR Code
generation described in this tutorial.

The method involves the use of a .NET Standard 2.0 class library for encoding input data and
applying a barcode font to the result for display. This has the advantage of having no
dependencies on any underlying graphics API. The class library validates input data, generates
Error Correction Codewords, and applies necessary QR Code mask patterns before returning a text
string of ones (1 - Black) and zeros (0 - White). In this tutorial, we are using Visual Studio on

Windows to demonstrate the QR Code generation process. It is possible to create QR Code using
the same method with Visual Studio Code on other platforms.

Prerequisite

• ConnectCode QR Code package is installed
• Visual Studio 2019 16.6 (or onwards)

1. Launch Visual Studio and click on Create a new project. Select the "Blazor WebAssembly App"

and click on Next button.

2. In Configure your new project dialog, enter "BlazorQRCode" as Project name, leave everything
else as default values, and click on the Next button. A Visual Studio solution containing
WinUIQRCodeApp and WinUIQRCodeApp (Package) is created.

In Additional Information dialog, choose .NET Core 3.1 (LTS) target framework and then the
Create button. You can also choose .NET 5 as the Target Framework if you like to.

Pg 6-15

QR Code Barcode

3. After the project is created, add the QR Code class library available in nuget.org to the project.
In Solution Explorer, right-click on BlazorQRCode and select Manage Nuget Packages. In Nuget
Package Manager shown below, click on Browse and search for "ConnectCode QR Code", select
"NETStandardQRCode", and click on Install to add the class library (select version 1.0.2 or above).

4. Next, add the QR Code font into the project. In Solutions Explorer, right-click on wwwroot,

select Add -> New Folder, and name the folder as "fonts". Next, right-click on "fonts" folder, select
Add -> Existing Item and navigate to the following folder:

C:\Program Files (x86)\ConnectCodeQRCode\Resource\Fonts

(or C:\Program Files (x86)\ConnectCodeQRCodeTrial\Resource\Fonts if you are using the Trial
version)

Select the Web Open Format (WOFF) QR Code font:

CCodeQR.woff (or CCodeQR_Trial.woff)

If your web project requires compatibility with older browsers that do not support WOFF, you can
also add the Open Type font in the same folder.

Pg 6-16

QR Code Barcode

5. In Solutions Explorer -> Pages, click on Index.razor, and add the following code.

<div id="qrBarcodeFonts">@((MarkupString)qrCodeStr)</div>

@code {

 private string qrCodeStr = "";
 protected override async Task OnInitializedAsync()

 {
 QR qr = new QR("12345678", "M", 8);
 qr.NewLine = "
";
 qrCodeStr = qr.Encode();
 }
}

The razor code defines qrCodeStr with qrBarcodeFonts CSS style. qrCodeStr is initialized with the
result returned by the QR Code class library. For the code above, we are generating a QR Code
with "12345678" as the input, "M" (L, M, Q, and H) as the Error Correction Level, and "8" (Auto)
as the Mask Pattern.

If you are using the class library in a server or in a native application, the library will automatically
detect the environment to return \n or \r\n using Microsoft Environment.NewLine. In our scenario,
we are using the class library in a HTML environment, so we overwrite the NewLine character with
the HTML br tag.

6. The last step is to apply QR Code barcode font to the text string result returned by the class

library. We have already specified qrBarcodeFonts style for the div element in the previous step,
thus we just need to define this style in our CSS. In Solutions Explorer, click on css -> app.css,
and add the following CSS definitions into the file.

@font-face {
 font-family: CCodeQR;
 src: url("../fonts/CCodeQR.woff") format("woff");
}

#qrBarcodeFonts {
 font-weight: normal;

 font-style: normal;
 line-height: normal;
 font-family: 'CCodeQR', sans-serif;
 font-size: 12px;
 letter-spacing: -1px;

 line-height: 98%;

}

Some browsers automatically add a very small space between characters vertically and
horizontally. This may result in the square patterns in the QR Code looking spaced out. This issue

can be removed by specifying the letter-spacing and line-height CSS property.

Pg 6-17

QR Code Barcode

7. In Visual Studio, click on IIS Express in the toolbar to run the application. You should see the
following Blazor WebAssembly application with a standards-compliant QR Code barcode.

Pg 7-18

QR Code Barcode

7. JavaScript SDK
This is an elegant solution that enables you to generate high quality QR Code barcodes using
JavaScript with a HTML5 Canvas or World Wide Web Consortium (W3C) compliant Web Fonts. The

generated QR Code barcode is able to meet the strictest industry requirements required by the
auto-id industry.

JavaScript QR Code Resource Folder

• Resource/Javascript

The snippet below illustrates the use of the HTML5 Canvas tag on a HTML page.

<canvas id="barcodeCanvas" width=300 height=300>12345678</canvas>

The following JavaScript code shows how to render a QR Code barcode on the HTML5 Canvas.

var elementBarcode = document.getElementById("barcodeCanvas");
var barcode = new QRCode(elementBarcode.innerHTML, "L", 8);
barcode.drawOnCanvas("barcodeCanvas");

Parameters

Input Data: elementBarcode.innerHTML (or any other input string)

Error Correction Level: "L" ("L", "M", "Q" or "H")

L - Allows recovery of up to 7% data loss
M - Allows recovery of up to 15% data loss

Q - Allows recovery of up to 25% data loss
H - Allows recovery of up to 30% data loss

Mask: 8 (0 to 7 or 8 for Auto)

The purpose of a mask pattern is to make the QR code easier for QR scanner to read.

7.1 QR Code Barcode with JavaScript and Barcode Web Fonts

The output generated by the JavaScript library can also be rendered as a QR Code Barcode
through the use of a Web Open Font Format Font (WOFF). WOFF is an optimized font format

recommended by World Wide Web Consortium (W3C) for use in web pages. It uses compression
on Open Type or True Type fonts to achieve file size reduction so that it can be efficiently
distributed over the web.

The QR Code Barcode WOFF fonts provided by ConnectCode have been tested vigorously to display
and print on different desktop and mobile browsers. It is important to know that a font raster to
the output device and is not limited to DPI (Dots per Inch) of the computer screen. This enables
very high quality QR Code barcodes to be generated.

The font solution for generating barcodes is based on ConnectCode’s True Type barcode font

engine that has passed numerous independent audits and is widely adopted by many Fortune 500
companies. QR Code fonts in Embedded Open Type (EOT), and Open Type (OTF) format are also
provided to ensure that the solution works on legacy browsers that have yet to fully support
WOFF.

Pg 8-19

QR Code Barcode

8. Component Object Model Library

This tutorial illustrates the use of a COM (Component Object Model) object library with a True Type
Font (QR Code Barcode Font), provided in ConnectCode QR Code package, to create a ISO/IEC
18004:2015 standard-compliant QR Code in a .NET Windows Form application.

Prerequisites

• ConnectCode QR Code package is installed

• QRCodeCOMLibrary.dll in the Resource\QRCodeCOMLibrary subdirectory of ConnectCode
QR Code package. The QR Code class library has been compiled with the "Register for COM
interop" Visual Studio project property, exposing a COM-callable wrapper that enables
COM interaction.

• Visual Studio 2015/2017

• Administrator Rights

file:///C:/vc5/ConnectCode/SecureWebsiteMobileFriendly/qrcodebarcode.shtml

Pg 8-20

QR Code Barcode

8.1 Tutorial on creating QR Code using COM

1. Launch the Visual Studio Developer Command Prompt as Administrator from the Windows Start
Menu.

2. In the Developer Command Prompt, use the "cd" command to go to the QR Code COM Library

folder.

cd C:\Program Files (x86)\ConnectCodeQRCode\Resource\QRCodeCOMLibrary
(or ConnectCodeQRCodeTrial if you are using the Trial package)

3. Enter the following command in the Developer Command Prompt to use Regasm.exe to register
the QRCode COMLibrary assembly for use with COM.

Regasm QRCodeCOMLibrary.dll /tlb:QRCodeCOMLibrary.tlb /codebase

Regasm.exe adds information about the class to the system registry so that COM clients can use

the .NET Framework class transparently. The tlb option generates a type library defined within the
assembly.

4. Launch Visual Studio. Create a new Windows Form project by clicking on "File->New Project",
select a "Windows Forms App" and click on "Create" button.

Pg 8-21

QR Code Barcode

5. Double click on "Form1.cs" in the "Solution Explorer" and add a "Button" and a "RichTextBox"
from the Visual Studio Toolbox. You should see your Windows Form similar to the screenshot
below.

6. Right click on the "WindowsFormApp1" project in the "Solution Explorer" and select "Add-
>Existing Item". Navigate to the "C:\Program Files (x86)\ConnectCodeQRCode\" folder and select
the "CCodeQR.ttf" font. If you are using the trial version, select the "CCodeQR_Trial.ttf" font
instead.

Pg 8-22

QR Code Barcode

7. In "Solution Explorer", select the "CCodeQR.ttf" font and change the "Build Action" to "Content"
and "Copy to Output Directory" to "Copy Always" in the Properties pane. This will ensure that
Visual Studio deploy the QR Code barcode font for use with the Windows Form application.

8. Double click on "Form1.cs" in the "Solution Explorer". In the designer, double click on the
Button. This will generate the button1_Click function in the editor. Enter the C# programming
codes as shown below:

using System.Drawing.Text;
.
.
.
.
private void button1_Click(object sender, EventArgs e)
{

 try
 {

 Type comObjectType =
 Type.GetTypeFromProgID("Net.ConnectCode.QRCodeCOMLibrary");
 dynamic theComObject = Activator.CreateInstance(comObjectType, false);

 //or
 //Guid myGuid = new Guid("5E206D5A-D9C2-45AA-BBFD-2E9B36AD437D");
 //Type comObjectType = Type.GetTypeFromCLSID(myGuid);
 //dynamic theComObject = Activator.CreateInstance(comObjectType, false);

 string inputData = "12345678";
 string ecl = "L"; //L, M, Q or H

 int mask = 8; //0 to 7 or 8 for Auto
 string result1 = theComObject.Encode_QRCode(inputData,ecl,mask);
 string result = result1;
 richTextBox1.Text = result;
 System.Diagnostics.Debug.WriteLine(result1);

 PrivateFontCollection pfc = new PrivateFontCollection();
 pfc.AddFontFile("CCodeQR.ttf"); //pfc.AddFontFile("CCodeQR_Trial.ttf");
 richTextBox1.Font = new Font(pfc.Families[0], 8, FontStyle.Regular);

 }
 catch (Exception ex)
 {

 System.Diagnostics.Debug.WriteLine(ex);

 }

}

The C# function above creates a QR Code COM object and then uses it to generate a QR Code
barcode with the input data "12345678". The result is placed in "richTextBox1" and the final

output is displayed with the CCodeQR True Type font. When you run the application, click on the
"Encode with COM" button, you should see the QR Code barcode as shown below.

Pg 8-23

QR Code Barcode

The "QRCodeCOMApplication" folder in "C:\Program Files (x86)\ConnectCodeQRCode\Resource"

contains the full source code of the above application.

Pg 9-24

QR Code Barcode

9. PowerBuilder

This tutorial illustrates the use of a COM (Component Object Model) library and a barcode font
available in ConnectCode QR Code package for creating QR Code barcode in PowerBuilder. The
generated QR Code complies with the ISO/IEC 18004:2015 standards and is able to meet the
strictest requirements of the Auto-ID industry.

Prerequisites

• PowerBuilder v12 (or APPEON PowerBuilder 2017. In 2016, SAP and Appeon has entered

into an agreement whereby Appeon would be responsible for developing and marketing
PowerBuilder.)

• ConnectCode QR Code package is installed

9.1 Tutorial on creating a QR Code in PowerBuilder

1. Launch a Windows Command Prompt as Administrator. In the Command Prompt, enter the
following command to go to the QRCodeCOMLibrary folder.

cd C:\Program Files(x86)\ConnectCodeQRCode\Resource\QRCodeCOMLibrary

2. Next, use the Assembly Registration Tool (Regasm.exe) to register the QRCodeCOMLibrary.dll

assembly with COM.

 Regasm QRCodeCOMLibrary.dll /tlb:QRCodeCOMLibrary.tlb /codebase

If Regasm is not available, you can verify if the following folder exists and add the folder into your
PATH. The folder may be different depending on your version of .NET.

C:\Windows\Microsoft.NET\Framework\v4.0.30319\

file:///C:/vc5/ConnectCode/SecureWebsiteMobileFriendly/qrcodebarcode.shtml

Pg 9-25

QR Code Barcode

3. Launch PowerBuilder and create a new Template Application in the Target tab.

4. You can select “SDI application” as the "Application Type" and “None” in Connectivity Options”
to create a sample application.

Pg 9-26

QR Code Barcode

5. Click on w_genapp_main when the application is created. From the Menu select "Insert-
>Control->CommandButton" and rename the button to "QR Code". Next, insert a TextEdit control
and layout the components as shown in the screenshot below.

Select the TextEdit control, change the Font to CCodeQR (or CCodeQR_Trial) and the Font Size to 8 to fit the

barcode nicely on the TextEdit control. The output generated by the QRCodeCOMLibrary will be
placed in the TextEdit control and displayed as a barcode with the CCodeQR True Type font.

Pg 9-27

QR Code Barcode

6. Next, double click on the button and add the following script:

OLEObject barcode
int return_code
barcode = CREATE OLEObject
return_code=barcode.ConnectToNewObject("Net.ConnectCode.QRCodeCOMLibrary")
if return_code<>0 then
 destroy barcode

 messagebox ("Error","QRCodeCOMLibrary not available")
else
 string result
 string input="12345678"
 result=barcode.Encode_QRCode(input,"L",8)
 rte_1.replaceText(result)
 destroy barcode

end if

In the source code above, an OLE object is created with the QRCodeCOMLibrary. The
"Encode_QRCode" method is used to generate the barcode.

Error Correction Level: "L" ("L", "M", "Q" or "H")

L - Allows recovery of up to 7% data loss
M - Allows recovery of up to 15% data loss
Q - Allows recovery of up to 25% data loss
H - Allows recovery of up to 30% data loss

Mask: 8 (0 to 7 or 8 for Auto)

Pg 9-28

QR Code Barcode

7. Run the application by going to the menu and select “Run->Select and Run”. Click on the "QR
Code" button and see that you get the QR Code barcode output in the TextEdit control. If you get
an error message saying that "QRCodeCOMLibrary is not available", check that you have carried
step 2 successfully.

Pg 10-29

QR Code Barcode

10. Crystal Reports UFL

This tutorial illustrates the use of a UFL (User Function Library for Crystal Reports) with a True
Type Font (QR Code Barcode Font), provided in ConnectCode QR Code package, to create a
ISO/IEC 18004:2015 standard-compliant QR Code barcode in Crystal Reports. A User Function
Library is a dynamic link library that enables Crystal Reports to add customized functions to
Formula Workshop.

Prerequisites

Crystal Reports 2016

• Crystal Reports 2016 (the UFL works on earlier versions as well)
• ConnectCode QR Code package is installed

• CRUFL_QRCodeBarcode.dll in the Resource\CrystalReportsUFL subdirectory of

ConnectCode QR Code package.
• x86 Native Tools Command Prompt
• Administrator Rights

Crystal Reports 2020

• Crystal Reports 2020

• ConnectCode QR Code package is installed
• CRUFL_QRCodeBarcode.dll in the Resource\CrystalReportsUFL\x64 subdirectory of

ConnectCode QR Code package.
• x64 Native Tools Command Prompt
• Administrator Rights

Note – x86/x64 Native Tools Command Prompt is available in the Desktop Development with C++

Workload of Visual Studio.

10.1 Tutorial on creating QR Code with Crystal Reports UFL

1. Launch Windows Explorer and go to the ConnectCode QR Code package folder. The QR Code
package is installed in "C:\Program Files (x86)\ConnectCodeQRCode" folder by default.

Crystal Reports 2016

In the "Resource\CrystalReportsUFL" subfolder, locate the "CRUFL_QRCodeBarcode.dll" and
"crw32.exe.config" files, and copy the DLL to the Crystal Reports Library folder. The Crystal
Reports Library folder is in a folder like the one below.

C:\Program Files (x86)\SAP BusinessObjects\SAP BusinessObjects Enterprise XI 4.0\win32_x86

The "crw32.exe.config" file contains the following to enable mixed-mode assembly.

 <?xml version ="1.0"?>
 <configuration>
 <startup useLegacyV2RuntimeActivationPolicy="true" >
 <supportedRuntime version="v4.0" />

 </startup>
 </configuration>

Pg 10-30

QR Code Barcode

Crystal Reports 2020

In the "Resource\CrystalReportsUFL\x64" subfolder, locate the "CRUFL_QRCodeBarcode.dll" and
"crw32.exe.config" files, and copy the DLL to the Crystal Reports Library folder. The Crystal

Reports Library folder is in a folder like the one below.

C:\Program Files (x86)\SAP BusinessObjects\SAP BusinessObjects Enterprise XI 4.0\win64_x64

The "crw32.exe.config" file contains the following to enable mixed-mode assembly.

 <?xml version ="1.0"?>

 <configuration>
 <startup useLegacyV2RuntimeActivationPolicy="true" >

 <supportedRuntime version="v4.0" />
 </startup>
 </configuration>

2. For Crystal Reports 2016, launch the "x86 Native Tools Command Prompt for VS 2017/2019"
(the 32-bit prompt is required for loading a UFL to Crystal Reports 2016) as Administrator from the
Windows Start Menu.

For Crystal Reports 2020, launch the "x64 Native Tools Command Prompt for VS 2017/2019" (the

64-bit prompt is required for loading a UFL to Crystal Reports 2020) as Administrator from the
Windows Start Menu.

3. In the Command Prompt, use the "cd" command to go to the Crystal Reports Library folder.

Crystal Reports 2016

cd C:\Program Files (x86)\SAP BusinessObjects\SAP BusinessObjects Enterprise XI 4.0\win32_x86

Crystal Reports 2020

cd C:\Program Files (x86)\SAP BusinessObjects\SAP BusinessObjects Enterprise XI 4.0\win64_x64

Pg 10-31

QR Code Barcode

4. Enter the following command in Command Prompt to load the UFL.

gacutil -i CRUFL_QRCodeBarcode.dll

Regasm CRUFL_QRCodeBarcode.dll

Ensure that the UFL is loaded successfully as shown in the screenshot below.

5. Launch Crystal Report and create a new "Standard Report". Click on the Finish button when
prompted to select the data that you want to report on.

Pg 10-32

QR Code Barcode

6. When the report is created, right click on "Formula Fields" in the "Field Explorer" and select
"New" to create a new formula.

7. Name the formula as "qrcode".

8. In the "Formula Workshop", expand "Functions->Additional Functions->COM and .NET UFLs
(u212com.dll)". Check that you see the "ConnectCodeClassQRCodeEncode" formula. If you do not
see this formula, please ensure that you have run steps 2-4 successfully.

Pg 10-33

QR Code Barcode

9. Double click on the formula, change “Crystal Syntax”to “Basic Syntax” and enter the following
VBA programming codes below:

 ConnectCodeClassQRCodeEncode("12345678","L",8)
 Dim x As Number
 Dim Result As String
 For x = 1 To ConnectCodeClassQRCodeNumBlocks()
 Result=Result + ConnectCodeClassQRCodeGetBlocks(x)

 Next x
 formula = Result

The formula uses "12345678" as the input data, "L" as the error correction level and 8 as the

Mask.

Error Correction Level: "L" ("L", "M", "Q" or "H")

L - Allows recovery of up to 7% data loss
M - Allows recovery of up to 15% data loss
Q - Allows recovery of up to 25% data loss

H - Allows recovery of up to 30% data loss

Mask: 8 (0 to 7 or 8 for Auto)

The purpose of a mask pattern is to make the QR code easier for QR scanner to read.

After the QR Code is encoded, a loop is required to return the output in blocks. The
reason is because Crystal Reports enforces a 255 characters length limit on the output
returned by a UFL formula.

10. When ready, click on the "Save and close" button. In the designer, drag the "qrcode" formula
onto the report.

On the Design tab, select the object created and change the font to "CCodeQR" (or
"CCodeQR_Trial"). Change the Font Size to 6 to fit the barcode nicely on the report.

Pg 10-34

QR Code Barcode

11. Click on "View->Print Preview" to preview the report with the QR Code barcode.

Pg 11-35

QR Code Barcode

11. Microsoft Reporting Services
SQL Server Data Tools (SSDT) is a modern development tool for building SQL Server relational
databases, Azure SQL databases, Analysis Services data models, Integration Services packages,

and Reporting Services reports. This tutorial illustrates how to create industrial quality barcodes in
a Reporting Services Report with SSDT using Visual Studio.

Prerequisites

• Visual Studio 2017 or 2019 installed

• SQL Server Data Tools (SSDT) standalone or SSDT for Visual Studio installed. The SSDT
component can be found in Visual Studio installer -> Workloads -> Data storage and
processing -> SSDT.

• SQL Server 2017 or 2019 installed
• AdventureWorks database (or other databases) installed

• Reporting Services installed
• ConnectCode QR Code package installed

11.1 Configuring Visual Studio

Copying "QRCodeLibrary.dll"

You need to copy "QRCodeLibrary.dll" (Resource\ReportingServices subdirectory) to the "SSRS"
directory of Visual Studio.

C:\Program Files (x86)\Microsoft Visual
Studio\2019\Enterprise\Common7\IDE\CommonExtensions\Microsoft\SSRS

or

C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\Common7\IDE\CommonExtensions\Microsoft\SSRS

You will also need to copy "QRCodeLibrary.dll" to the "PrivateAssemblies" directory of Visual

Studio.

C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\IDE\PrivateAssemblies

or

C:\Program Files (x86)\Microsoft Visual Studio\2017\Enterprise\Common7\IDE\PrivateAssemblies

Pg 11-36

QR Code Barcode

Editing "RSPreviewPolicy.config" to grant FullTrust permission

The "RSPreviewPolicy.config" is the preview policy file of Report Designer.

C:\Program Files (x86)\Microsoft Visual
Studio\2019\Enterprise\Common7\IDE\CommonExtensions\Microsoft\SSRS\RSPreviewPolicy.config

or

C:\Program Files (x86)\Microsoft Visual
Studio\2017\Enterprise\Common7\IDE\CommonExtensions\Microsoft\SSRS\RSPreviewPolicy.config

The following tag needs to be added to the "RSPreviewPolicy.config" file to grant FullTrust

permission to the "QRCodeLibrary.dll". This is required for previewing a Report that uses a DLL in
Report Designer.

<CodeGroup class="UnionCodeGroup" Name="QRCodeBarcodeFonts" version="1"
PermissionSetName="FullTrust"
Description="This code group grants QRCodeLibrary.dll FullTrust permission.">
<IMembershipCondition class="UrlMembershipCondition" version="1"
Url="C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\IDE\
CommonExtensions\Microsoft\SSRS\QRCodeLibrary.dll"/>

</CodeGroup>

or

<CodeGroup class="UnionCodeGroup" Name="QRCodeBarcodeFonts" version="1"
PermissionSetName="FullTrust"
Description="This code group grants QRCodeLibrary.dll FullTrust permission.">

<IMembershipCondition class="UrlMembershipCondition" version="1"
Url="C:\Program Files (x86)\Microsoft Visual Studio\2017\Enterprise\Common7\IDE\
CommonExtensions\Microsoft\SSRS\QRCodeLibrary.dll"/>
</CodeGroup>

Pg 11-37

QR Code Barcode

11.2 Configuring Reporting Services

At a file level SQL Server Reporting Services 2017 is now completely separated from SQL Server
file structure. This differs from previous versions of Reporting Services and SQL Server.

Copying "QRCodeLibrary.dll"

You need to copy "QRCodeLibrary.dll" from Resource\ReportingServices subdirectory to the
"ReportServer\bin" directory of SQL Server Reporting Services.

C:\Program Files\Microsoft SQL Server Reporting Services\SSRS\Reporting
Services\ReportServer\bin

Editing "rssrvpolicy.config" to grant FullTrust permission

The "rssrvpolicy.config" is the Report Server policy configuration file.

C:\Program Files\Microsoft SQL Server Reporting Services\SSRS\Reporting
Services\ReportServer\rssrvpolicy.config

The following tag needs to be added to the "rssrvpolicy.config" file. It grants FullTrust permission
to “QRCodeLibrary.dll” in Report Server.

<CodeGroup class="UnionCodeGroup" Name="QRCodeBarcodeFonts" version="1"
PermissionSetName="FullTrust"
Description="This code group grants QRCodeLibrary.dll FullTrust permission.">
<IMembershipCondition class="UrlMembershipCondition" version="1"

Url="C:\Program Files\Microsoft SQL Server Reporting Services\SSRS\
Reporting Services\ReportServer\bin\QRCodeLibrary.dll"/>
</CodeGroup>

Pg 11-38

QR Code Barcode

11.3 Create barcodes in a Microsoft Reporting Services (SSDT)

1. Launch Visual Studio and create a new Project. Select " Report Server Project Wizard". Enter a
name for your project and click on the "OK" button.

Pg 11-39

QR Code Barcode

2. A "Welcome to the Report Wizard" will be launched to provide you with an overview of the steps
required to create a report. Click on the "Next" button. You should see the "Select the Data
Source" dialog as shown below:

Pg 11-40

QR Code Barcode

3. Click on the "Edit" button to setup the Data source. In the screenshot below our
"AdventureWorks" database is stored in the "DESKTOP-UNTIFK9" Server with Windows
Authentication. You can choose to setup the connection to your database. After setting up the
properties, you can click on the "Test Connection" button to ensure a successful connection before

proceeding. Click on the "OK" button when you are ready.

Pg 11-41

QR Code Barcode

4. In the "Select the Data Source" dialog, click on the "Next" button. In the "Design the Query"
dialog, click on the "Query Builder" button. You should see the following dialog as shown in the
screenshot below:

Pg 11-42

QR Code Barcode

5. We are going to select 3 fields (columns) from the "Production" table. Enter the following query
and click on the "OK" button:

SELECT ProductID, Name, ProductNumber from Production.Product

6. In the "Select the Report Type" dialog, select a "Tabular" report and click on the "Next" button.

In the "Design the Table" dialog, select all the available fields and add them to the "Details"
section as shown below:

Pg 11-43

QR Code Barcode

7. Click on the "Next" button followed by the "Finish" button.

Pg 11-44

QR Code Barcode

8. We have now successfully created Reporting Services (.rdl) report in Visual Studio. If you are
using Visual Studio 2019, click on "Report1.rdl" in "Solutions Explorer", and then the "..." button in
"Properties -> Assemblies". If you are using Visual Studio 2017, click on the "Report -> Report
Properties" menu item. We are going to add a reference to our "QRCodeLibrary.dll". This DLL

(Dynamic Link Library) will be used to help you generate a QR Code in the report.

Click on the "References" tab and click on the "Add" button followed by the "..." button to add an
assembly. In the "Add Reference" dialog, click on the "Browse" tab and navigate to the
"C:\Program Files (x86)\ConnectCodeQRCode\Resource\ReportingServices" folder. Select the
"QRCodeLibrary.dll" and click on the "OK" button.

Click on the "Add" button in "Add or remove classes". Enter
"Net.ConnectCode.BarcodeFontsStandard2D.QR" as the class name and "qrcode" as the instance
name and click on the "OK" button. We have successfully added a reference to the DLL and
created an instance object for generating QR Codes.

Pg 11-45

QR Code Barcode

9. Click on the Code tab and enter the following:

Public Function MakeBarcode(datastring As String) as String
return qrcode.Encode(datastring,"H",0)
End Function

The programming codes above use the barcode instance object to generate a QR Code barcode
with the “datastring” parameter as the input data, “H” as the Error Correction Level, and 0 as the
QR Code Mask.

Supported Error Correction Level

L - Allows recovery of up to 7% data loss
M - Allows recovery of up to 15% data loss
Q - Allows recovery of up to 25% data loss
H - Allows recovery of up to 30% data loss

Supported Mask: 8 (0 to 7 or 8 for Auto)

Next, click on the "OK" button to exit from the "Report Properties" dialog.

Pg 11-46

QR Code Barcode

10. In the "Design" tab of "Report1.rdl", right-click on the last column of the table and select
"Insert Column->Right". We are going to add a column for our QR Codes.

11. In the Toolbox, select a "Text box" object and add it into the column from the previous step.

The output characters generated by the DLL will be placed in the "Text box".

12. Right-click on the "Text Box" object and select "Expression". Enter the following expression:

=Code.MakeBarcode(Fields!ProductNumber.Value)

If you recall, "MakeBarcode" is a function we have defined in "Report Properties". And, in the
above, we apply the function on the "ProductNumber" field. The result will be placed in the "Text
box" field.

Pg 11-47

QR Code Barcode

13. In the previous steps, we have defined a "MakeBarcode" function that uses the
"QRCodeLibrary.dll" to generate a QR Code. To be more exact, the "MakeBarcode" function returns
a stream of output characters. These output characters when applied with QR Code barcode font
gives you an industrial quality QR Code barcode.

Next, we are going to apply a barcode font to the "Text box" that contains our output characters.
Click on the "Text box" object and expand the "Font" properties as shown below. Set the "Font" to
"CCodeQR" (or "CCodeQR_Trial") and "FontSize" to "7". You can reduce or increase the "FontSize"

later to meet the size requirements of your QR Code.

Pg 11-48

QR Code Barcode

14. Save all the files and click on the "Preview" tab. You should see the following report with QR
Code barcodes generated using the "ProductNumber" field.

